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Calcium doping effect on the ferroelectric properties of Ba1-xCaxTiO3: BCTx (x = 0.01, 0.05, 0.1) ceramic 
material prepared via the sol-gel process was studied. X-ray diffraction (XRD) showed that the powders 
of calcined BCTx at 900°C crystallize in a pure phase of perovskite type without secondary phases. 
Microstructural morphology was analyzed by Scanning Electronic Microscopy (SEM). Dielectric 
measurements were carried out by an analyzer of impedance in an active temperature range from 
ambient to 400°C for various frequencies (0.1 kHz – 1 MHz). The modeling of the permittivity shows a 
thermal behavior controlled by the traditional Curie-Weiss law and the transition remains of first order 
for all the concentrations studied similar to that of the BaTiO3 sample. 
 
Key words: BCT, Sol-Gel, Ferroelectric, SEM, Curie point. 

 
 
INTRODUCTION 
 
Because of its excellent ferroelectric properties, to which 
is added the very good stability of its chemical and 
mechanical perovskite structure, barium titanate BaTiO3 

remains the preferred material for many applications such 
as: dielectric capacitors (Hung et al., 2003), ceramics 
with Positive Temperature Coefficient of Resistance: 
PTCR (Hreniak et al., 2006). 

BaTiO3 is known for its transition or Curie temperature, 
TC of 120°C (Haertling, 1999) which delimits the two 
dielectric states: ferroelectric state for T<TC in which the 
material crystallizes in the quadratic system and 
paraelectric state for T˃TC where the structure becomes 
cubic system.  

Several doping elements can be  added  to  BaTiO3  for  

adapting some particular properties to specific 
applications: Sr

2+
 would decrease its transition 

temperature TC, Pb
2+

 would increase Tc and Co
2+

 would 
attenuate the losses for intense electric fields without 
affecting its piezoelectric constant (Haertling, 1999). 
Barium calcium titanate crystals show promising 
applications in advanced laser systems, optical 
interconnects and electronic or optical storage devices 
(Veenhuis et al., 2000).  

Considerable efforts have been devoted to elucidate 
the effect of Ca doping on the dielectric properties of 
BaTiO3 in the solid solution of Ba1-xCaxTiO3 (BCT). In 
fact, calcium acts as a reduction inhibitor in BaTiO3 and 
reduces  the  possibility  of  formation  of   the   unwanted

 

*Corresponding author. E-mail:lhoussain-kadira@gmx.fr. 

  

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License 

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


72         Int. J. Phys. Sci. 
 
 
 
hexagonal phase (Victor et al., 2003). However some 
properties still remain source of many controversies such 
its effect on the variation in the BaTiO3 temperature 
transition and on the change of the nature of the ferro-to-
paraelectric transition: brutal transition or diffuse phase 
transition (DPT). Indeed, Berlincourt and Kulesar (1952) 
deferred that Ca doping of BaTiO3 out of calcium leads to 
a negligible change of the Curie transition Tc. Later Mitsui 
and Westphal (1961) showed that the permittivity of 
BaTiO3 modified with Ca

2+ 
presents diffuse character of 

peak transition. Zhuang et al. (1987) found that the 
addition of an even small quantity in the Ti

4+
octahedral 

site led to a DPT transition and Tc dropped significantly. 
Subsequently, and contrary to Zhuang et al. (1987), 
Tiwari et al. (1989) reported that the Ba

2+
substitution by 

Ca
2+

 in the tetrahedral site of BaTiO3 causes a significant 
increase  in TC and induces a diffuse type transition. Very 
recently Varatharajan et al. (2000) observed an increase 
in the transition temperature, TC according to Ca

2+ 
which 

depends on the site of occupation and possibly on the 
preparation method. Having adopted the recent sol-gel 
method as preparation procedure owing to its many 
advantages: very low crystallization temperature, 
stoichiometry, purity and smoothness of the grains and 
moderate cost (Xing et al., 2004; Zhu et al., 2006), we 
aimed, through this work, to study the behavior of the 
transition temperature  as a function of Ca doping in the 
solid solution Ba1-xCaxTiO3 (BCTx2 x= 0.00, 0.01, 0.05 
and 0.10). In the present work for x=0.00, 0.01, 0.05 and 
0.10, we have used BT, BCT0.01, BCT0.05, BCT0.1 
notations. X-ray Diffraction (XRD), Scanning Electronic 
Microscopy (SEM) and Impedance-Spectroscopy 
Analysis (ISA) measurements are used for physical-
chemical characterization.  
 
 
EXPERIMENTAL PROCEDURE 

 
The preparation route can be summarized as follows and it is 
similar to that deferred in Kadira et al. (2003). The titanium sol was 
prepared, starting from titanium alkoxide (titanium tetraisopropoxide 
Ti[OCH(CH3)2]4, 97% min Assay Johonson Mathey Gmbh) peptized 
with the lactic acid (CH3CH(OH)COOH, ACS, 85.0-90.0% (Assay)). 
Ba

2+
 and Ca

2+ 
solutions were prepared respectively by dissolution of 

barium acetate dihydrate (Ba(CH3COO)2,3H2O, ACS reagent, 99%, 
243671 SIGMA-ALDRICH) and CaCO3 (Assay 100.1%, Fisher 
Scientific International Compagny ) in an acetic acid (ACS reagent, 
≥99.7%, SIGMA-ALDRICH) solution (1M). Then the various 
solutions are mixed with stoichiometric quantities according to the 
chemical formulation Ba1-xCaXTiO3 (x= 0.00, 0.01, 0.05 and 0.1). 
Drying with the drying oven leads to transparent xerogels which 
after crushing give raw powders of BCT. These powders were 
calcined at 900°C (4 h) for the formation of the crystalline phase. 
XRD Analysis is carried out on a XPERT-PRO diffractometer with a 

CuK- radiation (=1.54056 Å) and was controlled by a PC. A 
continuous sweeping was adopted with a step of 0.017° and 1.905 
s time per step. The angular range of selected measurement was of 
10 to 75°. All the various pastilles were sintered at 1300°C for 4 h in 
air. Scanning Electronic Microscopy Analysis was carried out on a 
JEOL JSM5500 apparatus. Metallization was carried out with 
carbon by cathodic evaporation by means of a metal sprayer of  the  

 
 
 
 
type SPI carbon Coater and dielectric measurements were 
collected by an LCZ3330 impedance analyzer controlled in 
temperature and computer assisted in both the heating and cooling 
phases. 
 
 
RESULTS AND DISCUSSION 
 

Figure 1 shows XRD diagrams of BCTx samples calcined 
at 900°C (4 h). All preparations crystallized in the pure 
perovskite phase without presence of secondary phases.  

Figure 2 represents the microstructure of BCT0.1 
sintered at 1300°C (4 h). It shows that the material has 
less porosity and that the distribution of the grains is 
rather uniform with an average diameter of 5 μm 
approximately. The perovskite phase of BCT ceramic 
remains very thermally stable after the sintering process, 
as indicated by the XRD diffractogram performed on a 
pulverized BCT0.1 pellet (Figure 3).  

The chemical analysis of the iso-valent modified BT 
sample (BCT0.1 sample sintered at 1300°C (4h)) 
synthesized by Sol-Gel route was achieved by energy 
dispersive X-ray spectroscopy (EDX), using an EDX 
spectrometer attached to the same SEM unit. Figure 4 
shows the EDX results of BCT0.1 sample. Table 1 
corresponding to Figure 4, confirms the stoichiometry of 
BCT0.1 sample. EDX results are in good agreement with 
those calculated from the chemical formula. 

Figure 5a and b present the thermal variation of the 

permittivity, r and of the dielectric losses, tg of BCT0.1 
material, respectively for various frequencies. When the 

temperature increases from the ambient one, r first 
increases in the ferroelectric state, passes through a 
maximum at 136.25°C then decreases (paraelectric 
state) up to 250°C and increases again. The Curie point 
shows a dispersive behavior according to the frequency. 
The dielectric losses remain lower than 0.1% in the 
vicinity of the transition. The temperature region higher 

than 250°C is marked by an important dispersion of r 

associated considerable dielectric losses which are of the 
order 2.3%. This indicates that the increase in the 
permittivity in this region is due to the mobility of space 
charges (ionic conductivity). The thermal hysteresis of 
this sample is about 23°C as illustrated in Figure 6. It 
indicates that the transition is of the first order. 

Table 2 gives the values of the temperature of 

transition, TC and the maximum of the permittivity, rmax 
for the various calcium concentrations. It illustrated also 
Curie-Weiss temperature (T0) and Curie-Weiss constant 
(C) values versus calcium concentration. The effect of 
calcium on TC is illustrated in Figure 7. TC increases in a 
significant way between 0 and 5% of Ca

2+
, then it 

undergoes a very light reduction beyond.  
Probably, there exists a critical concentration between 

5 and 10% for which Tc presents a maximum. In fact 
Mitsui and Westphal (1961) have found that this critical 
concentration is around 8%. For the concentrations 
studied in this work, BCT0.01 sample presents  the  lower 
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Figure 1.  XRD patterns of  BCT samples calcined at 900°C. 

 
 
 

 
 

Figure 2. SEM micrograph of sintered BCT0.1 sample. 
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pulverized pellet BCT0.1 (Fig. 3.).  

 

 

 

 

 

 

 

 

Fig. 3. XRD pattern of BCT0.1 sintered at 1300 ° C (4h).  
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Figure 3. XRD pattern of BCT0.1 sintered at 1300°C (4 h). 

 
 
 

 
 

Figure 4. EDX of BCT0.1 sample sintered at 1300°C (4 h). 

 
 
 

Table 1. EDX  BCT0.1 sample sintered at 1300°C (4 h). 
 

Element % theo. % Exper. Differ. 

MBa 55.18 50.98 4.200 

MCa 1.79 1.96 0.170 

MTi 21.60 25.48 3.880 

MO 21.43 21.58 0.150 
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Figure 5a. Thermal variation of r of BCT0.1 for various frequencies. 
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Figure 5b.  Thermal variation of tg measurements of BCT0.1 for various 
frequencies. 
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Figure 6. Thermal hysteresis for BCT0.1 sample (4 h). 
 
 
 

Table 2. Dielectric results obtained for BCT samples. 
 

Ca
2+

 (%) rmax Tc T0 C Tc-T0 

0 2508.77 130.00 91.76 10.08 10
+4

 38.24 

1 3229.79 131.26 107.46 8.46 10
+4

 23.80 

5 2889.43 136.41 107.32 7.11 10
+4

 29.09 

10 2764.55 136.25 115.69 6.41 10
+4

 20.56 
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Figure 7. TC and r max versus calcium concentration. 
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Figure 9. Dffuse character of Curie transition vs. calcium doping. 

 
 
 

maximum permittivity rmax value as shown in Figure 7. 
Ca

2+
 doping in perovskite A site was conducted in 

several literature works: wet chemical route by Jayanthi 
and Kutty (2004), solid route by Mitsui and Westphal 
(1961), Jeffe et al. (1971) and Victor et al. (2003), 
modified Solid State Reaction and Microwave Sintering 
Routes by Kumar (2011) and sol-gel method in this study. 
However,   sintering   conditions   are   so    different.    In  

Figure 8, we compare the results of these works to that of 
the present study; Tc variation as a function of x we found 
is in perfect agreement with the literature. 

To highlight the influence of Ca
2+

 on the diffuse 
behavior of the transition, we indicated in Figure 9 the 

evolution of r/r max according to T-TC for the various 
concentrations of BCT. According to this figure, one 
notice that BaTiO3 modified  at  5%  on  calcium  presents
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Figure 10. Paraelectric behavior modeling of BCT samples versus 

temperature. 

 
 
 
the most diffuse phase transition. The spreading out of 
the Curie peak decreases for doping with 0.01 out of 
Ca

2+
, then an increase for the fraction of 0.05 undergoes. 

The sample relating to 10 at % of Ca
2+ 

appreciably 
presents the same degree of spreading out as that of the  
sample doped at 1%. 

The modeling of the thermal paraelectric behavior of 
the various samples is given in Figure 10. The behavior 
of the various concentrations was described by the 

standard Curie-Weiss law: r=C/T-T0, where T0 and C are 
respectively the temperature and the constant of Curie-
Weiss respectively. The temperature T0 remains, in all 
cases, lower than TC (Figure 11), which indicates that the 
nature of the transition is of the first order. The value of 
constant C decreases as Ca

2+
 doping increases (Figure 

11) showing, thus, that the transition evolves gradually 
from the displacive type to the order-disorder one. 

Conclusion 
 
We have given in this work the study of the influence of 
calcium doping on the dielectric properties of BaTiO3. The 
samples were prepared by the recent sol-gel route. The 

structural characterization of the various concentrations of 
BCT by XRD reveals a complete crystallization in the 
pure perovskite structure. The dielectric study of BCTx 
compounds doped up to x=10 at % of calcium shows that 
the later gave rises to an increase of the transition 
temperature for x < 0.07. Concerning the diffuse 
character of the transition, it was found that the 
concentration of BCTx=0.05 shows the most diffuse 
transition. The thermal paraelectric behavior of the 
various samples was shown to follow the traditional 
Curie-Weiss law and the transition remains of first order 
for all the concentrations. 
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Figure 11. Curie-Weiss temperature, T0 and Curie-Weiss constant, C 
versus calcium concentration. 
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INTRODUCTION 
 
The nonlinear partial differential equations (NLPDEs) play 
an important role to investigate many problems in 
mathematical physics (Ablowitz and Segur, 1981) 
(applied mathematics, plasma, biology etc). Recently, 
obtaining the exact traveling wave solution of NLPDEs 
making addition to interpretation these physical 
phenomena. There exist many methods to obtain the 
exact solutions of these problems such as, tanh - sech 
method (Malfliet, 1992; Malfliet and Hereman, 1996; 
Wazwaz, 2004), extended tanh – method (EL-Wakil and 
Abdou, 2007; Fan, 2000; Wazwaz, 2007), sine - cosine 
method (Wazwaz, 2005; 2004; Yan, 1996), 
homogeneous balance method (Fan and Zhang 1998; 
Wang, 1996), Jacobi elliptic function method (Dai and 
Zhang, 2006; Fan and Zhang, 2002; Liu et al., 2001; 
Zhao et al., 2006),   F-expansion  method  (Abdou,  2007; 

Ren and Zhang, 2006; Zhang et al., 2006), exp-function 
method (He and Wu, 2006; Aminikhah et al., 2009), 
trigonometric function series method (Zhang, 2008),  
expansion method (Wang et al., 2008a, b; Zhang et al., 
2008; Mostafa, 2016), the modified simple equation 
method (Jawad et al., 2010; Emad et al., 2014; Mostafa, 
2015; Khan et al., 2013; Khan and Ali, 2013; Jawad et al., 
2010) and so on. The above methods depend on the 
balancing rule (the nonlinear term with higher order 
derivative term) of the dual ordinary differential equations 
to the original NLPDEs which fails for some NLPDEs. 
The exact traveling wave solutions contain some 
parameters, if we give these parameters definite values 
we obtain the solitary wave solution. 

This study shall propose a new method which does not 
depend on the balancing rule, namely the Riccati-Bernoulli
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Sub-ODE method (Emad and Mostafa, 2015) to seek 
traveling wave solutions of nonlinear evolution equations 
and according to a Backlund transformation we can 
generate  infinite sequence of solutions of NLPDEs. 
 
 
DESCRIPTION OF THE RICCATI-BERNOULLI SUB-
ODE METHOD 
 

Consider the following nonlinear evolution equation: 
 

                        (1) 
 
Where P is in general a polynomial function of its 
arguments, the subscripts denote the partial derivatives. 
The Riccati-Bernoulli Sub-ODE method consists of three 
steps. 
 
Step 1. Combining the independent variables x and t into 
one variable: 
 

                                                                (2) 
 
With 
 

                                                              (3) 
 
Where the localized wave solution  ( )   travels with 
speed V, by using Equations (2) and (3), one can 
transform Equation (1) to an ODE. 
 

                                   (4) 
 

where    denotes  
  

  
 

 
Step 2. Suppose that the solution of Equation 4 is the 
solution of the Riccati-Bernoulli equation 
 

                                                (5) 
 
Where a, b, c, and m are constants to be determined 
later. 

From Equation 5 and by directly calculating, we get: 
 

 (6) 
 

      (7) 
 
Remark: When ac ≠ 0 and m = 0, Equation 5 is a Riccati 
equation. When a ≠ 0, c = 0, and m ≠ 1, Equation 5 is a 
Bernoulli equation. Obviously,  the  Riccati  equation  and 
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Bernoulli equation are special cases of Equations 5. 
Because Equation 5 is firstly proposed, we call Equation 
5 the Riccati-Bernoulli equation in order to avoid 
introducing new terminology. Equation 5 has solutions as 
follows: 
 
Case 1. When m = 1, the solution of Equation 5 is 
 

 ( )    (     ) ,                                                          (8) 
 
Case 2. When m ≠ 1, b = 0 and c = 0, the solution of 
Equation 5 is: 
 

 ( )  ( (   )(   ))
 

(   ),                                     (9) 

 
Case 3. When m ≠ 1, b ≠ 0 and c = 0, the solution of 
Equation 5 is 
 

 ( )  ( 
 

 
    (   ) )

 
(   )

,                      (10) 

 

 ( )  (
  

  
 

√          (   (   )√      (   ))

  
)

 
(   )

,    (11) 

 

Case 4. When m ≠ 1, a ≠ 0 and       < 0, the solution 
of Equation 5 is 
 

( )  (
  

  
 

√         (   (   )√      (   ))

  
)

 
(   )

        (12) 

 
and 
 

 ( )  (
  

  
 

√         (   (   )√      (   ))

  
)

 
(   )

,      (13) 

 
Case 5. When m ≠ 1, a ≠ 0 and b2-4ac > 0, the solution 
of Equation 5 is: 
 

 ( )  (
  

  
 

√          (   (   )√      (   ))

  
)

 
(   )

     (14) 

 
and 
 
Case 6. When m ≠ 1, a ≠ 0 and b

2
-4ac = 0 the solution of 

Equation 5 is: 
 

 ( )  (
 

 (   )(   )
 

 

  
)

 
(   )

,                                  (15) 

 
Where C is an arbitrary constant. 
 
Step 3. Substituting the derivatives of u into Equation 4 
yields an algebraic equation of  . Noticing  the  symmetry 
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3 2 
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(2.6) 
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of the right-hand item of Equation 5 and setting the 
highest power exponents of u to equivalence in Equation 
4, m can be determined. Comparing the coefficients of u

i
 

yields a set of algebraic equations for a, b, c, and V. 
Solving the set of algebraic equations and substituting m, 
a, b, c, V, and  into Equations 8 to 15, we 
can get traveling wave solutions of Equation 1. 
 
 

BÄCKLUND TRANSFORMATION OF THE RICCATI-
BERNOULLI EQUATION 
 

When  and  are solutions of Equations (5), 
then 
 

                                    (16) 
 

                               (17)  
 

Since, 
 

             (18)  
 

Now, from Equations 16 and 18, we obtain: 
 

 (19) 
 

That is, 
 

         (20) 
 

Integrating above equation once with respect to  , we 
get: 
 

                   (21) 
 

Where A_1 and A_2 are arbitrary constants. 
According to Equations 21, we can get infinite 

sequence of solutions of Equation 5 and hence we can 
get infinite sequence of solutions of Equation 1. 
 
 

APPLICATION 
 

This equation is well-known (Zhang et al., 2010; Moosaei 
et al., 2011; Eslami et al., 2013, 2014; Mirzazadeh et al., 
2014; Biswas and Konar, 2007) and has the form: 
 

 2 2 2

1 2 3| u | { | u | | u | } 0t x x x x x x x
i u u u i u u u        

 
(22) 

 

Where 
1 2 3, , and      are constants such that 1  is  the 

 
 
 
 

third order dispersion, 2  is the nonlinear dispersion, 

while 3  is also a version of nonlinear dispersion (Biswas 

and Konar, 2007) and (Biswas, 2003). Equation 22 
describes the propagation of optical solitons in nonlinear 
optical fibers that exhibits a Kerr law nonlinearity. 
Equation 22 has been discussed in Moosaei et al. (2011) 
using the first integral method and in (Zhang et al., 2010) 
using the modified mapping method and its extended. Let 
us now solve Equation 22 using Riccati-Bernoulli Sub-
ODE method. To this end we seek its traveling wave 
solution of the form (Zhang et al., 2010; Moosaei et al., 
2011): 
 

       , exp , 2 .u x t i k x t k x t               (23)
 

 

Where ,k and   are constants, while 1.i    

Substituting Equation 23 into Equation 22 and equating 
the real and imaginary parts to zero, we have: 
 

     2 3 3 2

1 2 11 3 1 0,k u u u             
  
(24) 

 

With reference to Zhang et al. (2010), this equation can 
be rewritten as follows: 
 

3 0,Au B u u                                              
(25) 

 

Where  2

11 3A k    ,    3 2

2 11 .B and            

Substituting u'' into Equation 25 we get: 
 

            

      

2 3 2 2 12 2

2 3

3 2

1 2 0.

m m m

m

abA m u x Aa m u x Amc u x

Abc m u x A ac b u Bu u

  

   

      
(26) 

 
Setting m=0 Equation 26 becomes: 
 

 2 2 3 2 33 2 2 0,Aabu Aa u Abc A ac b u Bu u      
     

(27) 

 

Setting the coefficient of , 3,2,1,0iu i   to zero, we get: 

 
22 0,Aa                                                             

(28) 

 

3 0,Aab                                                                 
(29) 

 
22 0,Aac b A B                                                  

(30) 

 

0.Abc                                                                 (31)  

 
Solving Equations (28) to (31), we get: 
 

0,b                                                                         
(32) 

 

,
2

B
a

Ac




                                                                   

(33)

 = 𝑘(𝑥 + 𝑉𝑡) 

 𝑛 1( )  𝑛( )  

 

 𝑛
′ =   𝑛

2  +   𝑛 +   𝑛
       

 

 𝑛 1
′ =   𝑛 1

2  +   𝑛 1 +   𝑛 1
  

 

 𝑛
′ =   𝑛

2  +   𝑛 +   𝑛
       

 

 𝑛 1
′ =   𝑛 1

2  +   𝑛 1 +   𝑛 1
  

 𝑛
′ =

𝑑 𝑛( )

𝑑 
=

𝑑 𝑛( )

𝑑 𝑛 1( )

𝑑 𝑛 1( )

𝑑 
=

𝑑 𝑛( )

𝑑 𝑛 1( )
   𝑛 1

2  +   𝑛 1 +   𝑛 1
   

  𝑛
2  +   𝑛 +   𝑛

 =
𝑑 𝑛( )

𝑑 𝑛 1( )
   𝑛 1

2  +   𝑛 1 +   𝑛 1
   

𝑑 𝑛( )

  𝑛
2  +   𝑛 +   𝑛
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Figure 1. Solarity wave solution of Equations (34) to (37). According to Equations (34) and (35) when the parameters take the values 
(x=-5:5, t=-5:5), the solution represent periodic singular dark soliton; Equation (36) when the parameters take the values (x=-2:2, t=-
2:2) and (u=-2:2), the solution represent kink shaped solution; and  Equation (37) when the parameters take the values (x=-5:5, t=-
5:5), the solution represent multiple soliton solution. 

 
 
 

Case A: When 0,a   substituting Equations 32 and 33 

into Equations 11 and 12, we obtain the solitary wave 
solutions: 
 

  
2

(x, t) tan 2 ,
A

u k x t C
B




   
                            

(34)

  
 

  
2

(x, t) cot 2 ,
A

u k x t C
B




   
                        

(35)

   

where C, A and B are arbitrary real constants.  
 

Case B. When 0,a   substituting Equations 34 and 35 

into Equations 13 and 14, we obtain the solitary wave 
solutions: 
 

  
2

(x, t) tanh 2 ,
A

u k x t C
B




   
                         (36) 

  
2

(x, t) coth 2 .
A

u k x t C
B




   
                           (37)

 

 
If these solutions are substituted into Equation 21, infinite 
sequence of solutions can be obtained. According to the 
above results, its physical meaning is compatible with the 
corresponding physics described by the perturbed 
nonlinear Schrodinger equation with Kerr law nonlinearity 
of optical fiber, which in fact, describes it as a soliton 
wave with one peak such as observed in sound wave 
(Figure 1). 
 
 
CONCLUSIONS 
 
In this article, a new technique was introduced to obtain 
the exact and solitary wave solutions of the perturbed 
nonlinear    Schrodinger    equation    with    Kerr   law   of 
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nonlinearity which agree with all nonlinear evolutions 
equations used in mathematical physics and does not 
depend on the balancing rule which fails for some 
nonlinear evolution equations.  In addition to an infinite 
sequence of exact and solitary wave solutions can be 
generated according to a Backlund transformation of the 
Riccati-Bernoulli equation. It has been shown that the 
Riccati-Bernoulli Sub- ODE method is a powerful tool for 
all nonlinear evolution equations. Otherwise, the general 
solutions of the ODEs have been well known for the 
researchers. Furthermore, the new method can be used 
for many other nonlinear evolution equations. 
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